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1 Introduction

Let G denote a finite group, k a field such that char(k) = p divides #G, and Df(kG) the bounded derived
category of finitely generated kG (left-)modules.

1.1 Notation. For an object A of a triangulated categoryC , we denote by 〈A〉 the smallest thick subcategory
of C containing A. We denote by 〈A•〉⊗ the smallest thick ⊗-ideal in Df(kG) containing a complex A•.

The goal of this talk is to give a proof of the following theorem, which will allow us to deduce the
classification result of Benson-Carlson-Rickard later on.

Theorem (“Building”, see [3, Theorem 6.6]). If M•, N • are complexes in Df(kG) such that VG(M•) ⊂
VG(N •), then N • builds M•, i.e. M• ∈ 〈N •〉⊗.

Here, VG(M•) ⊂ Spec∗(H∗(G, k)) is the support variety of M• that we have already seen in a previous
talk and whose definition will be recalled later on. The proof is based on a result due to Carlson that we
discuss next.

2 Carlson’s generation theorem

We want to give a proof of the following statement:

2.1 Theorem (see [2]). Let E1, . . . , En ⊂ G denote the elementary abelian subgroups of G. Then

Df(kG) =

� n
⊕

i=1

k↑G
Ei

�⊗

.

2.2 Remark. Carlson’s generation theorem is usually stated in a stronger form than above: it asserts that
Df(kG) = 〈

⊕n
i=1 k↑G

Ei
〉. However, for our purposes, the version as in Theorem 2.1 suffices (and is easier

to prove).

We start with some preparatory results that concern the formal properties of the operations 〈−〉
and 〈−〉⊗.
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2.3 Lemma.

1. Let F :C →D be an exact functor of triangulated categories and let a, b be objects of C . If a ∈ 〈b〉,
then F(a) ∈ 〈F(b)〉.

2. Let A•, B•, C• ∈ Df(kG). If A• ∈ 〈B•〉⊗, then A• ⊗ C• ∈ 〈B• ⊗ C•〉⊗.

3. Let
C• = · · · → 0→ C1→ C2→ ·· · → Cn→ 0→ ·· ·

be a complex in Df(kG). Then C• ∈ 〈
⊕n

i=1 Ci〉.

4. Let H ⊂ G be a subgroup and A•, B• ∈ Df(kH). If A• ∈ 〈B•〉⊗, then A•↑G
H∈ 〈B

•↑G
H〉
⊗.

Proof. The first and second statement follow in a straightforward manner from the fact that an exact
functor preserves distinguished triangles and direct summands, the third statement is proved by induction
on n, progressively truncating the complex C• and using that short exact sequences of chain complexes
give rise to distinguished triangles in the derived category. The proof of the last statement is a little more
involved: let us show that the full subcategory

S := {S• : S•↑G
H∈ 〈B

•↑G
H〉}

is a thick ⊗-ideal. Thickness follows easily as ↑G
H is an exact functor and as such preserves distinguished

triangles and direct summands. Let us show that it is a ⊗-ideal. Let S•, T • ∈ Df(kH) and assume S• ∈ S .
Then we have that

(S• ⊗ T •↑G
H↓

G
H)↑

G
H
∼= S•↑G

H ⊗T •↑G
H∈ 〈B

•↑G
H〉
⊗

where we used Frobenius reciprocity and that S•↑G
H∈ 〈B

•↑G
H〉
⊗. Next, observe that

T •↑G
H↓

G
H= kH(kG ⊗kH T •) =

⊕

[G:H]

T •

as kG is a free kH-module of rank [G : H]. It follows that S• ⊗ T • is a direct summand of S• ⊗ T •↑G
H↓

G
H ,

which is in S by the above computation. As S was a thick subcategory, it follows that S• ⊗ T • ∈ S ,
which shows that S is a ⊗-ideal. As we have B• ∈ S we therefore must have 〈B•〉⊗ ⊆ S which implies
A• ∈ S by assumption. By definition of S it follows that A•↑G

H∈ 〈B
•↑G

H〉
⊗ which proves the lemma.

The proof of Theorem 2.1 is now performed in three steps:

1. Reduce to the case where G is a p-group.

2. Use Serre’s theorem "on the vanishing of a product of Bocksteins" and a little homological algebra.

3. Induction on #G = pn.

Let us show how to reduce to the case where G is a p-group.

2.4 Lemma. Let S ⊂ G denote a Sylow p-subgroup. The trivial kG-module k is a direct summand of k↑G
S .
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Proof. Recall that kS↑G
S= kG ⊗kS kS and we have a surjective augmentation map ϕ : kS↑G

S→ k with the
property ϕ(g ⊗ a) = a for all a ∈ k and g ∈ G. The submodule of kS↑G

S generated by the element ` =
∑

G/S g ⊗ 1, the sum of a complete set of left coset representatives of S in G, is G-invariant. Furthermore,
ϕ(`) = [G : S] mod p, which is non-zero in k. Hence, the map

ψ : k→ kS↑G
S

1 7→
1

[G : S]
· `

is a kG-homomorphism that is a right-inverse for ϕ.

2.5 Proposition. Assume Theorem 2.1 holds for all p-groups G. Then it holds for all G.

Proof. With the assumptions as in Theorem 2.1 and G not a p-group, let S ⊂ G be a Sylow p-subgroup.
By assumption, we have

Df(kS) =

� n
⊕

i=1

k↑S
Ei

�⊗

where Ei , i = 1, . . . , n are the elementary abelian subgroups of S. In particular, we have that k ∈
〈
⊕n

i=1 k↑S
Ei
〉⊗ which implies by Lemma 2.3 that

k↑G
S∈

� n
⊕

i=1

k↑G
Ei

�⊗

.

Using Lemma 2.4, it follows that k ∈ 〈
⊕n

i=1 k↑G
Ei
〉⊗ which implies that 〈

⊕n
i=1 k↑G

Ei
〉⊗ = Df(kG).

The crucial step in the proof of Theorem 2.1 is the second one, which we sketch next: let us first
review some homological algebra concerning Ext functors. For A, B ∈ kG−mod there are two different
perspectives on the group Extn

kG(A, B). We may view an element f ∈ Extn
kG(A, B) as an exact sequence

f1 : 0→ B
d1

−→ E1→ ·· · → En
dn+1

−−→ A→ 0

or alternatively as a morphism
f2 : A→ B[n]

in Df(kG). Given an exact sequence f1, the corresponding morphism f2 is constructed as follows: consider

the diagram of chain complexes A
s
←− f̃

t
−→ B[n] given by

B[n] = · · · // 0 // B // 0 // 0 // · · · // 0 // 0 // · · ·

f̃ = · · · // 0 // B d1
//

��

idB

OO

E1
d2
//

��

OO

E2
//

��

OO

· · · dn
// En

//

dn+1

��

OO

0 //

��

OO

· · ·

A= · · · // 0 // 0 // 0 // 0 // · · · // A // 0 // · · ·
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We see that s is a quasi-isomorphism and therefore invertible in the derived category. The map f2 is
defined as the composition s−1 ◦ t. It is not hard to check that the mapping cone of f2 is quasi-isomorphic
to the complex

· · · → 0→ E1
−d2

−−→ E2→ ·· ·
−dn

−−→ En→ 0→ ·· ·

with E1 in degree n. Let us summarize the preceding discussion:

2.6 Lemma. Let A, B ∈ kG−mod and f ∈ Extn(A, B). Assume that f is represented by an exact sequence

0→ B
d1

−→ E1
d2

−→ · · ·
dn

−→ En
dn+1

−−→ A→ 0 .

If we identify Extn(A, B) with HomDf(kG)(A, B[n]), then cone( f ) ∈ Df(kG) is quasi-isomorphic to the complex

· · · → 0→ E1
−d2

−−→ E2→ ·· ·
−dn

−−→ En→ 0→ ·· ·

with E1 in degree n.

2.7 Remark. The above operation preserves compositions: if f ∈ Extn
kG(A, B) and g ∈ Extm

kG(B, C), then
the construction takes the Yoneda splice of two exact sequences representing f and g to their compositions
as morphisms in Df(kG).

The next theorem is the key result for the proof Theorem 2.1.

2.8 Theorem (Serre). Let G be a p-group which is not elementary abelian and let H1, . . . , Hm be the
maximal subgroups of G. Then there exist elements β(zi) ∈ H2(G, k) = Ext2(k, k), i = 1, . . . , m, represented
by exact sequences of the form

0→ kG → kHi
↑G

Hi

αi−→ kHi
↑G

Hi
→ kG → 0 ,

such that their product β(z1) · . . . · β(zm) vanishes in H2m(G, k) = Ext2m(k, k).

2.9 Corollary. Let G be a p-group which is not elementary abelian and let H1, . . . , Hm be the collection of
maximal subgroups of G. Then

Df(kG) =

� m
⊕

i=1

kHi
↑G

Hi

�⊗

Proof (adapted from [1, Proof of Theorem 4.3]). We let β(zi) ∈ H2(G, k) = Ext2(k, k), i = 1, . . . , m be as
in Theorem 2.8. By Lemma 2.6, they correspond to morphisms β(zi) : k→ k[2] in Df(kG) with

cone(β(zi))∼= · · · → 0→ kHi
↑G

Hi

αi−→ kHi
↑G

Hi
→ 0→ ·· · .

From Lemma 2.3, we see that the truncation of the Yoneda splice of all the exact sequences representing
β(zi)

0→ kH1
↑G

H1

α1−→ kH1
↑G

H1
→ kH2

↑G
H2

α2−→ kH2
↑G

H2
→ ·· · → kHm

↑G
Hm

αm−→ kHm
↑G

Hm
→ 0 (1)

is in 〈
⊕m

i=1 kHi
↑G

Hi
〉. By Remark 2.7, the complex (1) is the mapping cone of β(z1) · . . . · β(zm) ∈

HomDf(kG)(k, k[2m]). But by Serre’s theorem β(z1) · . . . ·β(zm) = 0, so its mapping cone (1) is isomorphic
to k[1]⊕ k[2m]. Thus, k ∈ 〈

⊕m
i=1 kHi

↑G
Hi
〉, which implies that 〈

⊕m
i=1 kHi

↑G
Hi
〉⊗ = Df(kG).
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We are now ready for the last step of the proof of the generation theorem.

Proof of Theorem 2.1. By Proposition 2.5, we may assume that G is a p-group of order pn, and the proof
will proceed by induction on n. For n= 1, the statement is trivial as G is elementary abelian itself and

Df(kG) = 〈k〉⊗ = 〈k↑G
G〉
⊗ .

Therefore, assume we have proved the theorem for all n < n0 and G has order n0. If G is elementary
abelian, we are done again, so assume it’s not. By Corollary 2.9, we have

Df(kG) =

� m
⊕

i=1

kHi
↑G

Hi

�⊗

with H1, . . . , Hm be the maximal subgroups of G. All the Hi are p-groups of order < pn0 and so by the
induction hypothesis, we have for all i

Df(kHi) =

� ni
⊕

s=1

k↑Hi
Eis

�⊗

with Ei1 , . . . , Eini
the elementary abelian subgroups of Hi . Now notice that for each i, we have k ∈

〈
⊕ni

s= j k↑Hi
Eis
〉⊗, and by Lemma 2.3, we have that k↑G

Hi
∈ 〈
⊕ni

s= j k↑G
Eis
〉⊗. It follows that

m
⊕

i=1

kHi
↑G

Hi
∈

®

⊕

s,i

k↑G
Eis

¸⊗

from which we deduce the inclusion

Df(kG) =

� m
⊕

i=1

kHi
↑G

Hi

�⊗

⊆

®

⊕

s,i

k↑G
Eis

¸⊗

that must then be an equality.

3 Proof of the main theorem

We will now recall a notion of support for complexes C• ∈ Df(kG) that we already saw in a previous talk.
Let us define

H•(G, k) =

¨

⊕

i Exti
kG(k, k) if p = 2

⊕

i Ext2i
kG(k, k) otherwise

In both cases, H•(G, k) is a commutative noetherian k-algebra and for any complex C• of kG-modules,
there is a k-algebra homomorphism

−⊗ C• : H∗(G, k)→ Ext∗(C•, C•)

which gives Ext∗(C•, C•) the structure of a module over H•(G, k). It is a finitely generated module when
C• is in Df(kG) by the Evens-Venkov theorem.
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3.1 Definition. Let C• be a complex in Df(kG). Its support is the subset

VG(C
•) := SuppH•(G,k)Ext∗(C•, C•) ⊂ Spec∗(H•(G, k)) .

We now relate this notion of support to the one discussed in the previous lectures. Let E be an
elementary abelian p-group of rank r. Its group algebra is isomorphic to the artinian complete intersection
R := k[z1, . . . , zr]/(z

p
1 , . . . , zp

r ). In a previous talk, we defined for any complex C• in Df(R) a support
variety VR(C•) using the action of Ext∗R(k, k) on the module Ext∗(k, C•) (restricted to a polynomial subring
k[θ ]). It turns out that the two support varieties VR(C•) and VE(C•) coincide.

3.2 Lemma. E be an elementary abelian p-group of rank r with group algebra isomorphic to R :=
k[z1, . . . , zr]/(z

p
1 , . . . , zp

r ). For any complex C• in Df(kE), we have an equality

VE(C
•) = VR(C

•) .

Idea of the proof. One first shows that for any homogeneous prime ideal p ∈ Spec∗(H•(G, k)), we have

Ext∗(C•, C•)p = 0⇔ Ext∗(B•, C•)p∀B• ∈ Df(kE)⇔ Ext∗(k•, C•)p = 0

where the last step follows from Df(kE) = 〈k〉. Since the inclusion of k[θ ] into Ext∗(k, k) factors through
H•(G, k) and becomes an isomorphism after killing all nilpotents (which don’t contribute to the support
anyway), the equality of support varieties follows.

Before we come to the proof of the main theorem, recall from a previous lecture that the restriction
functor ↓G

E : kG−mod → kE−mod induces a map of graded rings H•(G, k) → H•(E, k) which in turn
induces a map of support varieties

res∗ : Spec∗(H∗(E, k))→ Spec∗(H∗(G, k)) .

3.3 Lemma. Let C• be a complex in Df(kG). Then

VE

�

C•↓G
E

�

= (res∗)−1 (VG(C
•)) .

As mentioned before, the proof of Lemma 3.3 is not so easy and can, for example, be deduced from
the Quillen stratification theorem.

We have now assembled all of the tools to give a short proof of the main theorem of this lecture.

3.4 Theorem. If M•, N • are complexes in Df(kG) such that VG(M•) ⊂ VG(N •), then M• ∈ Thick⊗(N •).

Proof. Let E be an elementary abelian subgroup of G. Then by Lemma 3.3 and our assumption we obtain

VE(M
•↓G

E ) = (res∗)−1 (VG(M
•)) ⊂ (res∗)−1 (VG(N

•)) = VE(N
•↓G

E )

and by Lemma 3.2 and a result of a previous lecture, this implies that M•↓G
E∈ 〈N

•↓G
E 〉. By Lemma 2.3

and using Frobenius reciprocity it follows that

M•↓G
E ↑

G
E= M• ⊗k k↑G

E∈ 〈N
•↓G

E ↑
G
E 〉= 〈N

• ⊗k k↑G
E 〉 ⊂ 〈N

•〉⊗ .

Next, let E1, . . . , Et denote the elementary abelian p-subgroups of G. By Theorem 2.1, we have that
k ∈ 〈

⊕

i kEi
↑G

Ei
〉⊗ and from Lemma 2.3 we obtain that M• ∈ 〈

⊕

i M•⊗k k↑G
Ei
〉⊗. By our previous calculation,

M• ⊗k k↑G
Ei

is contained in 〈N •〉⊗ for i = 1, · · · , t, and so we must have that
⊕

i M• ⊗k k↑G
Ei
∈ 〈N •〉⊗ and

thus

M• ∈
�

⊕

i

M• ⊗k k↑G
Ei

�⊗

⊆ 〈N •〉⊗

which finishes the proof of the theorem.
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